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A/_ EXPERI_JNTAL STUDY AT A MACH NUMBER OF 3 OF THE

EFFECT OF TURBULH_CE LEVEL AND SANDPAPER-TYPE

ROUGHNESS ON TRANSITION ON A FLAT PLATE

By Robert A. Jones

SUMMARY

An investigation has been conducted at a Mach number of 3 of the

effect of turbulence level and sandpaper-type roughness on transition

for a flat plate. The Reynolds number varied from 0.8 × 106 to

i.$ × 106 per inch; the settling-chamber turbulence level varied from

0.7 percent to 35 percent; and the heat transfer between the plate and

the stream was negligible. Transition locations were determined by an

optical method. This method was indicative of a perlmanent change in

the boundary-layer density distribution rather than the onset of turbu-

lent bursts. Results showed that, when transition was influenced by

roughness, it moved in a way similar to its movement on a smooth plate.

That is, it gradually approached the roughness location with either an

increase in unit Reynolds number or an increase in turbulence level.

For roughness submerged in the linear portion of the boundary-layer

velocity profile, the square root of the rougi_ness Reynolds number and

the ratio of roughness height to boundary-layer displacement thickness

gave similar results as parameters for predicting the effects of rough-

ness. A range of each of these parameters which moved transition less

than i0 percent was found and this range was a function of turbulence

level.

IlYi_0DUCT ION

The effect of roughness on the flow in a boundary layer has been

considered in two essentially different ways. One way is to consider

the roughness as having an effect when turbulent spots begin to appear

downstream of the roughness. The point where these turbulent spots

begin to appear can be detected by a hot wire located in the boundary

layer. The other way is to consider roughness as having an effect when

these turbulent spots become significant enough to make a permanent ar

pronounced change in the boundary-layer velocity and density distribu _on.



The point where this change in velocity and density distribution begins
to take place can be detected by total-pressure surveys, schlieren and
shadowgraphpictures, heat-transfer measurements, sublimation of solids,
phosphorescent films, and so forth.

A direct comparison of data obtained by these two methods can not
be madesince, when the turbulent spots first appear, they maynot be
frequent enough or maynot be of a large enough size to makea permanent
change in the boundary-layer velocity and density profiles.

A review of low-speed data on the effect of two-dimensional rough-
ness on transition as indicated by permanent changes in the boundary-
layer velocity and density profiles given in reference 1 indicated that
the ratio of roughness height k to the displacement thickness at the
roughness location 5k* is a better representation of the data than a

constant critical Reynolds number Rk of the roughness element. The

data of reference 2 were correlated according to the former parameter

and indicated that for two-dlmensional roughness three to seven times

the value of kISk* at low speeds was necessary to effect transition at

a Mach number of 5.

In reference 3, a comparison was made between the effect of two-

and three-dimensional roughness on transition as indicated by the onset

of turbulent bursts (first method) at low speeds. For two-dimensional

roughness, there was a relationship between transition Reynolds number

R t and k/Sk* similar to that found in reference i. Three-dimensional

results failed to satisfy such a relation. With three-dimensional rough-

ness there was no effect until a value of Rk was reached which brought

transition to the roughness location.

A low-speed investigation of the effect of distributed granular-

type roughness on transition reported in reference 4 indicated that,

when the roughness is submerged in the linear portion of the local

boundary-layer velocity profile, turbulent spots begin to appear imme-

diately behind the roughness when a critical Rk of approximately 600

was reached. This investigation was extended in reference 5 to Mach

numbers of 1.6 and 2.0 and indicated that turbulent spots begin to

appear at supersonic speeds at approximately the same critical Rk.

Several previous investigations have studied the effects of tunnel-

turbulence level on transition for smooth models. (See refs. 6 to 9.)

Transition location as indicated by a permanent change in the velocity

and density distribution was found to be a function of turbulence level;

however, no consistent trends were found. No studies are known which

include the effects of turbulence level on transition influenced by

roughness.
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The present investigation was conducted to study the effect of

settling-chamber turbulence level on transition as indicated by ape _

manent change in the velocity and density distributions on a flat pla_e

with and without roughness at a Mach number of 3 and with zero heat

transfer. Results will be presented in terms of the parameters R k

and k/Sk* for three sizes of distributed roughness in strips at various

locations and pressure levels and for three settling-chamber turbulence

levels.

SYMBOLS

0

k

M

X

U

V

R

R k

U !

Y

Subscripts :

k

t

t'

local density

height of roughness element, in.

Mach number

distance from leading edge, in.

local streamwise component of velocity

local coefficient of kinematic viscosity

Reynolds number

Ukk
roughness Reynolds number,

vk

bou.ndary-layer displac ement thi c kne s s, _ 0_ I 1 P P_) dy

root-mean-square longitudinal turbulent velocity component

in settling chamber

distance normal to the surface

conditions at top of roughness element

conditions at beginning of transition

conditions at end of transition
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conditions for smooth plate

conditions for free stream

APPARATUS

Wind Tunnel

All tests were conducted in a Mach number 3 blowdown tunnel of the

Langley gas dynamics laboratory. The nozzle of this tunnel was two-

dimensional. The top of the nozzle was made of steel lined with plastic

and was contoured for M = 3 flow. The bottom of the nozzle was a flat

steel plate. (See fig. i.) The test section measured 5 by 8 inches in

cross section and had a Mach number distribution of 3.05 ± 0.04. A

range of settling-chamber pressures of 55 to 125 pounds per square inch

gage and a constant settling-chamber temperature of i00 ° F were used for

these tests. These conditions resulted in a Reynolds number range from

0.8 x 106 to 1.8 x 106 per inch.

The settling chamber of this tunnel was long and readily accessible;

thus it was possible to operate the tunnel at different turbulence levels

by changing the settling-chamber configuration. The configuration causing

the highest turbulence level consisted of a perforated cone supported by

a ring at its base. This cone was used to break up the large eddies in

the flow and not to generate turbulence. A lower turbulence level was

obtained when this cone was followed by four fine-mesh-wire damping

screens. The lowest turbulence level was obtained by using two porous

plates having a total pressure drop ranging from 30 to 70 pounds per

square inch as damping screens. These plates were located downstream

of the perforated cone. (See fig. i.)

Model

The model was a flat plate 12 inches long, made of steel, and

spanned the test section. It had a leading-edge wedge angle of 14 °.

The leading edge was rounded and its thickness was kept between 0.006

and 0.007 inch. The finish of the plate was approximately 200 micro-

inches. The variation of Mach number as determined by static-pressure

probes along the forward portion of the plate is shown in figure 2.

The plate was supported by a i/8-inch-thick steel channel fastened to

the underside of the plate and to the test-section side walls.



TESTMETHODSANDTECHNIQUES

Hot-Wire Determination of Turbulence Level

Measurementsof the longitudinal turbulence intensity were madeat
several radial locations in a plane 5 inches downstreamfrom the last
screen in the settling chamber. The mean-flow velocity was approximately
50 feet per second in this plane. A hot-wire probe employing tungsten
wire 0.0003 inch in diameter and 0.125 inch long was used. The longi-
tudinal turbulence intensity was taken as the average of several measure-
ments and, within their accuracy (±0.2 percent at the low-turbulence
level), was determined to be a constant over the range of test pressures
for each settling-chamber configuration.

The actual values of turbulence intensity are only qualitative.
The settling-chamber turbulence level was recorded since the test-section-
turbulence level could not be measuredbecause of wire failures. The
effect of tunnel contraction on the intensity of turbulence in the test
section is dependent on the character of the settling-chamber turbulence;
however, the test-section turbulence may have been considerably less than
the measured intensity in the settling chamber.

Transition Detern_ination by Shadowgraphs

The location of transition was determined optically by a method
used in references I0 and ii. In this method, photographic film was
placed on a parallel-motion mechanismwhich enabled the distance from
the model to the film to be adjusted in order to take advantage of
focusing effects caused by the refraction of light as it passes through
the boundary layer. The white laminar line appeared to be displaced
from the surface by a distance that is large comparedwith the boundary-
layer thickness. The displacement was nearly constant as long as the
layer remained laminar since the density profiles were nearly similar
along the plate length. The beginning of a change in the slope of this
laminar line represented the beginning of transition effects on the den-
sity profile and was taken as the beginning of transition itself. Thus,
this is a method which indicates a permanent change in the density pro-
file and is different from the method used in references 3 to 5. The
end of convergence represented the end of transition. An example is
illustrated for the smoothplate in figure 3. The arrows indicate the
beginning of transition; this point was taken as the transition location.
At least two shadowgraphswere madefor each test point. The transition
point measuredby the shadowgraphsagreed within 0.2 inch for each test
point. The exposure time of the flash was between 5 and 6 microseconds.



Transition Determination by Sublimating Solid

Transition was also determined by the sublimation of acenaphthene
crystals sprayed on the plate. (See ref. 12.) The procedure was to
spray the plate with a saturated solution of acenaphthene, allow the
solution to dry, and then mount the plate in the test section. The tun-
nel was run until the transition pattern becameclear, then it was shut
down, and the plate removedand photographed.

In order to determine whether the crystals themselves affected
transition, transition was determined by the shadowgraphtechnique for
the smoothplate and for the smoothplate sprayed with acenaphthene
crystals. No effect of the crystals on transition was noticed.

Photographs of the plate showing the pattern of transition down-
stream of a roughness strip are presented in figure 4. In these photo-
graphs a strip of 0.O02-inch roughness elements 1/8 inch wide was
located i/2 inch from the leading edge. The acenaphthene crystals
covered the entire portion of the plate from 1/8 inch downstreamof the
roughness to the end of the plate.

Determination of RoughnessSize

Roughnessof three sizes and composedof aluminum-oxide particles
was used. The strip to be coated with roughness was sprayed with a
very thin coating of lacquer, and then the roughness particles were
sprayed on by meansof an artist's air brush. Applying the roughness
in this mannerproduced a uniform distribution of roughness which
adhered well to the plate. Photographs of sample roughness strips are
presented in figure 5. The maximumheight of the roughness particles
was determined by laying a parallel bar over the roughness strip and
measuring its displacement from the plate at several spanwise locations
before and after testing. Small areas of roughness I/4 inch by i/8 inch
were checked and were found to have the samemaximumdisplacement. The
maximumdisplacement was found to be constant for different roughness
strips of the sameparticle size and was taken to be the roughness
height.

RESULTSANDDISCUSSION

Tabular Presentation of Results

All the principal results and parameters are given in table I in
der to permit possible comparison in other forms and with parameters

other than those discussed herein if desired. For these results,



transition locations were obtained from shadowgraphs. The width of the

roughness strip in every case was 1/8 inch and the distance from the

leading edge to the roughness location x k was measured to the center

of the strip. Values of _ and 5k* were calculated from velocity

and temperature distributions through the boundary layer obtained by the

methods of reference 13 and from the viscosity obtained by Sutherland's

law. The static pressure was assumed to be constant across the boundary

layer. For these calculations, the maximum value of k as described

under "Determination of Roughness Size" was used.

Certain peculiarities in the data should be noted. The data for

which transition occurred at the roughness location are indicated in
91

the column headed "Transition at x k. In every case, the distance to

transition x t is larger than the distance to the roughness location

x k. This difference is due in part to the peculiarities of the method

of indicating transition. It was noticed during the experiments that

transition, as indicated by shadowgraphs, gradually approached x k

Uoo

as the unit Reynolds number -- increased until it reached a certain
Voo

small distance from x k. Upon reaching this location, an increase in

u_ would not continue to move transition and it was assumed that tran-
Voo

sition was fixed at the roughness. It is believed that, when transition

is at the roughness, the disturbance waves from the roughness may affect

the slope of the laminar white line. (See fig. 6.) In figure 6 a strip

of O.O02-inch roughness is located 1.5 inches from the leading edge.

It should also be noted that there are several points for which

transition caused by roughness is farther downstream than transition of

the smooth plate ,(xt > Xt,o)._ A large part of this difference is due

to the scatter in the data; however, because of the peculiarity of the

method of indicating transition, as the roughness location nears the loca-

tion of transition for the smooth plate these points would appear down-

stream of the natural transition point.

Results for the Smooth Plate

The effect of settling-chamber turbulence level on transition

Reynolds number for the smooth plate is shown in figure 7. A maximum

transition Reynolds number of 3-7 x 106 was obtained at a unit Reynolds

number of 1.77 x 106 per inch and a settling-chamber turbulence level

of 0.7 percent. In general, at a given unit Reynolds number, when the

turbulence level was decreased, the transition Reynolds number increased.
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At the low turbulence level, the transition Reynolds number increased

steadily with an increase in unit Reynolds number while at the two higher

turbulence levels the transition Reynolds number increased initially but

at higher unit Reynolds numbers it decreased. No explanation for this

reversal at the higher turbulence level was found.

Results for Sandpaper-Type Roughness

The transition pattern behind roughness as obtained with the sub-

limation technique is shown in figure 4. The mean location of transition

varied across the span of the plate. (See figs. 4(a) and 4(b).) This

is believed to be due to the interaction of the nozzle wall boundary

layer with the plate boundary layer. Superimposed on this spanwise
variation was a streamwise variation of transition location.

The shadowgraph indicates the point across the span where the tran-

sition effects first make a change in the boundary-layer density profile

and the point where the boundary layer becomes completely turbulent

across the span. The beginning and end of transition as indicated by

the shadowgraphs agreed fairly well with the beginning and end of the

transition region indicated by the sublimation technique in the center

portion of the plate. Therefore, it is assumed that the transition

point indicated by the shadowgraph technique is one which takes into

account the random streamwise fluctuations and is not significantly

affected by mean variation along the span caused by the interaction of

the plate and nozzle wall boundary layers.

A few tests were made to determine the effect of the width of the

roughness strip on transition. Tests were made for two roughness heights

for the entire plate downstream of 15/16 inch covered with roughness.

These results are compared with those for a i/$-inch strip located the

same distance from the leading edge of the plate in figure 8. The wide

strip moved transition further forward on the plate than did the i/8-inch

strip. This effect may be due to the wider strip having a larger number

of I_ximu_ size particles. With the exception of figure 8, all the data

in this report are for a i/8-inch-wide roughness strip.

Transition locations obtained from shadowgraphs are given as a
U'

function of roughness location x k for the turbulence levels -- in
u

figures 9 to 12 for roughness heights k of 0.002, 0.003, and 0.005 inch.

The solid symbols indicate transition essentially at the roughness loca-

tion. Also included are the transition locations for the smooth plate

(k = O) indicated by the dashed lines. Note that for the O.O05-inch

roughness height, transition was always located at the roughness location.



Certain general trends maybe deduced from these figures. When
transition was influenced by roughness, it movedin a way similar to
its movementon the smoothplate_ that is, it gradually movedforward
with either an increase in u_ or an increase in u' until it reached

u_ u

the roughness location. The gradual decrease in x t with an increase

in u_ was a trend similar to that for two-dimensional roughness at
V_

low speeds reported in references i and 3 but is different from the

results of distributed roughness at low speeds reported in references 3

and 4 where it was found that roug_iness either had no effect on tran-

sition or moved transition to the roughness element. It is believed
that this difference is due to the difference in the transition criteria

as discussed in the "Introduction" and that a direct comparison is not

valid.

Another trend to be noted is that an increase in turbulence caused

transition to move forward except where transition was located at the

roughness.

are shown plotted against R t for each turbulenceValues of

level in figure 13. The square root of the roughness Reynolds number

was used as it is more near linearly proportional to the projection

height for roughness submerged in the linear portion of the boundary-

layer velocity profile. Values of k/_k* are shown plotted against R t

for each turbulence level in figure 14. In figures 13 and 14 the data

for which transition is fixed at the roughness strip (solid symbols) or

for which transition is not affected by the presence of the roughness

strip (flagged symbols) are valid only as indications of the boundaries

of the functional relationships which are plotted. A large similarity

between _ and k/_k* as parameters for predicting the effect of

roughness on transition is evident. With both parameters and the two

smaller values of k the minimum values required to fix transition

essentially at the roughness varied with k for a given u' and varied
u

u'
with -- for a given k.

u

R t
Values of _--_Rk and k are shown plotted against in fig-

_k* Rt,o

ures 15 and 16 for all turbulence levels. Here again, the similarity

between the two parameters is evident. It is also evident that plotting

of these parameters as functions of Rt does not take into account the

Rt,o

effect of turbulence on transition. This may be due to turbulence having

a larger effect on transition for larger roughness.
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kThe range of _Rk and which movedtransition less than
5k*

i0 percent (0.9xt, o _- xt <=Xt,o) is shownas a function of turbulence

level in figures 17 and 18. The range of 12 to 25 in _Rk at the low

turbulence level is approximately the same as the range of critical

roughness Reynolds number reported in reference 4 at low speeds and

reported in reference 5 at M = 1.6 and 2.0. It must be noted that the

transition criteria are different in these cases and thus a direct com-

parison is not valid.

A comparison of the present data in terms of k as a function

5k*

of Rt with the low-speed two-dimensional data of reference 1 and

Rt,o

with the M = 3 two-dimenslonal data of reference 2 is presented in

figure 19. It can be seen that three-dimensional distributed roughness

has a greater influence on transition than does two-dimensional rough-
ness at a Mach number of 5.

CONCLUSIONS

An optical method was used to study the effect of settling-chamber

turbulence level and sandpaper-type roughness on transition for a flat

plate at a Mach number of 3. This method was indicative of a permanent

change in the boundary-layer-density distribution rather than the onset

of turbulent bursts and indicated the following:

i. When transition is influenced by roughness, it moves in a way

similar to its movement on a smooth plate. That is, it gradually

approaches the roughness location with either an increase in unit

Reynolds number or an increase in turbulence level.

2. When the roughness is submerged in the linear portion of the

boundary-layer velocity profile, the square root of the roughness Reynolds

number and the ratio of roughness height to boundary-layer displacement

thickness give similar results when used as parameters for predicting

the effect of roughness.
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5. A range of either of these parameters which will move transition

less than i0 percent can be found and is a function of turbulence level.

When the turbulence level is high, this range is approximately constant;

as the level of turbulence is lowered, the upper limit of this range may

increase.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., October 30, 1958.
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(a) u_ = 0.885 x 106 in. -I.
V_

(b) u_ = 1.33 X 106 in. -I
V

(c) u_ _ 1.77 x 106 in. -I L-58-140a
V_

Figure 3.- Shadowgraph indication of transition. Smooth plate;

u--_ = 35 percent. Ax'rows indicate beginning of transition.



22

(a) I_ = 0.885 x 106 in. -I.
V_

(b) u_ : 1.33 × 106 in. -I.
V

(c) u__ = 1.77 X 106 in. -I.
V_

Figure 4.- Transition patterns by sublimating solid.

laminar, k = 0.002 in.; xk = 0.5 in.

L-58-141a

White portion is
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